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Abstract. We use the variational matrix-produghsatzto study elementary excitations in the

S = % ladder with additional diagonal coupling, equivalent to a single= % chain with
alternating exchange and next-nearest-neighbour interaction. In the absence of alternation, the
elementary excitation consists of two frée= % particles (‘spinons’) which are solitons in the
dimer order. When the nearest-neighbour exchange alternates, the ‘spinons’ are confined into
one S = 1 excitation which is a soliton in the generalized string order. The variational results
are found to be in qualitative agreement with the exact-diagonalization data for 24 spins. We
argue that such an approach gives a reasonably good description over a wide range of the model
parameters.

1. Introduction

Spin ladders continue to attract much attention as structures intermediate between one-
and two-dimensional forms and possibly important for the understanding of Thigh-
superconductivity [1]. On the other hand, there exists a close relationship between
‘generalized’ spin ladders (with an additional diagonal coupling), antiferromagnetic chains
with frustrating next-nearest-neighbour interaction, and the Haldane systems.
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Figure 1. The generalized spin ladder with additional diagonal (frustrating) coupling. The
arrows show the way in which the sites are numbered to map this system onto a single chain
with nearest- and next-nearest-neighbour interactions.

In the present paper we study elementary excitations of the generdlized% spin
ladder model (equivalent to a single-zigzag spin chain with alternation and frustration). The
model is described by the Hamiltonian (see figure 1)

H=Y"81,"So0u+@+)D>_ S1n+Sonsr+r Y (S Stass+ Son - Sonsd) (1)
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Figure 2. The phase diagram of the generalized ladder. The interval of theylire O for

0 < A < A = 0.2411 is gapless, and the other part of the diagram is gappedk ¥ and

k = 7 boundaries of the incommensurate region are variational estimates for the corresponding
Lifshitz lines determined from the variation of the wave vedta@f the lowest excitation mode.

The disorder line, where spin—spin correlations in the real space become incommensurate, for
the k = 0 boundary is known [34, 2] to be = 21 — 1; for thek = = boundary the exact
position of the disorder line is unknown.

where . > 0 determines the strength of the next-nearest-neighbour interactiony and
corresponds to alternation of the nearest-neighbour exchange, whose strength is set to be
unity. This model has rich behaviour depending on the values of parametsrdy, and

its phase diagram (see figure 2) is rather well understood [2, 3] (at least for the half-plane
A > 0; for negative) the situation is less clear [4]). Without loss of generality, we will
assume thay < 0, since there is an obvious symmetry transformation [3] relating the half-
planey > 0 with the strip—1 < y < 0. The ‘symmetry line’y = 0 is peculiar because it

is the line of transition between dimerized phases with different signs of the dimer order.
Within the interval O< 1 < A, ~ 0.24 this transition is of second order, the ground state

is unique and nondimerized, and the corresponding spectra are gapless; on the other part
of this line the transition is of first order, so far> i., y = 0 there are two degenerate
dimerized ground states, and the system is gapped. The transitios at. has been well
studied; see reference [5] for a review. Everywhere except at the symmetry line, the model
(1) has a unique ground state with a finite gap above it. In the limit —oco the diagonal

spins form effectiveS = 1 units, and the system becomes equivalent toStee1 Haldane

chain, with the effective coupling constafit+ 21)/4.

Elementary excitations of the generalized ladder, however, have been studied to a much
lesser extent than its ground-state properties. The Heisenberg model0( y = 0) is
exactly solvable by means of the Bethesatztechnique, and the elementary excitations are
pairs of noninteracting = % entities (‘spinons’) [6]. The ground state contains the Fermi
sea of spinons, and the excitations are of the particle—hole type.

It is also known that at the so-called Majumdar—-Ghosh (MG) point 0, A = %),
where the exact (twofold-degenerate) ground state is a simple product of singlet dimers
[7], the elementary excitation can be approximately constructed as a pair of unbound spins
above the completely dimerized state [8]. The elementary excitation is composed of two

S = % entities which are kinks in the dimer order and resemble spinons in that they
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are ‘almost free’ (i.e. form scattering states for most values of momenta) in the case of
unbroken translational invariance. When nonzero alternation is present, one may expect
those ‘spinons’ to be confined into a single= 1 particle [9-11].

In the Haldane limit (infinite alternation), the system has long-range hidden (string)
order [12], and the elementary excitation is known [13-15] to be a soliton in the string
order. The concept of string order was generalized to spin ladders [16—18] and it was
shown that several ladder models exhibit long-range generalized string correlations [18]. It
was argued [18] that the gapped phase of the spin ladder is the same as the Haldane phase
of the effectiveS = 1 chain.

We construct the variationainsatzfor the wave function of the elementary excitation in
the form of a matrix product, using the recently proposed [3] matrix-product-states approach
to the description of the ground-state properties of spin ladders. The ground state in this
approach has a built-in generalized string order, and we construct the excitationSas the
composite particle, which is a kink in the string order and consists of two bdu&d%
entities. The wave function of the kink pair contains only one variational paramnigter,
having the meaning of the average pair size (the localization length). We show that at the
MG point & is infinite, and ouransatzreduces to that of Shastry and Sutherland [8]; on
moving away from the MG pointé drops down very quickly to a value of about a few
lattice constants. At the ‘regular’ ladder point & —1, » = 1) the dispersion relation
as obtained from ouansatzagrees well with the results obtained by other authors using
different techniques (see reference [1] and references therein). In the Haldané ljoés
to zero, and our wave function transforms into the ‘crackiansatzintroduced by Eth
and Slyom [14] (see also reference [19]) for the description of the Haldane triplet in the
Affleck—Kennedy-Lieb—Tasaki (AKLT) model. We compare our variational results with the
numerical data obtained through the exact diagonalization of a finite (24-spin) ladder system,
and find a reasonable agreement between the two approaches. We conclude that our simple
variationalansatzallows us to study analytically at a qualitative level the crossover from
free to strongly bound spinons, giving a reasonably good description over a wide range of
physical models.

The paper is organized as follows: in section 2 we introduce ansatzfor the
elementary excitation. In section 3 we present results from the variational calculation and
compare them with numerical data. The elementary excitations in different regions of the
phase diagram are discussed. Finally, section 4 contains concluding remarks.

2. The two-spinon ‘composite particle’ansatz

Recently, a variational wave function for the description of the ground-state properties of
generalized spin ladders was proposed [3] in the form of a matrix-product (MP) state. The
MP representation was first discussed by Fangteal [20] in an abstract manner, and
later by Klumperet al [21] for the S = 1 deformed VBS chain, and has found since
then numerous applications in exact and variational calculations [22—-25]. It should also be
mentioned that the MP structure naturally appears in the thermodynamic anduldirgés

of the density matrix renormalization group calculations [26, 27]. For periodic boundary
conditions, the trial wave function for the ground state of the ladder consistingy cfphs

can be written as

[Wo) = Tr(g1g2---&gn) (2a)
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where
gi(u,v)=u (ils)i) +v Z Oultu)i. (2b)

n=0,£1
Here the elementary matriy; is constructed from the singlet stae; and three triplet
states|r,); of the ladder diagonalg, are the Pauli matrices in a spherical basis= o,
andoy1 = F(1/V2) (0, + ioy). The parametera and v in the case of the absence of
an external magnetic field can be chosen real, and they satisfy the normalization condition
u?+ 32 =1.
The wave function (&) has the following remarkable properties [3]:

(i) for arbitrary u andv it is a global singlet (see also reference [25] for details);

(ii) it has a built-in generalized string order defined as ‘diluted antiferromagnetic order’:
|t,1) and|t_;) should occur in perfect antiferromagnetic sequence, arbitrarily dilutgs)by
and |z)s;

(i) both degenerate dimer ground states at the Majumdar—Ghosh point can be written in
the above form, as can the ‘valence-bond’ AKLT state [28] which approximates the ground
state in the effectivéd = 1 Haldane limit. The two dimer ground states at the MG point
correspondtr =1, v=0andu =v = % respectively, and the AKLT state corresponds

to zero singlet weighti( = 0, v = 1/+/3).

The state (2) has very short-ranged correlations and therefore cannot be considered as
a good approximation in the gapless region of the phase diagram; we will thus restrict
ourselves to the study of the gapped phase only.

The variational energyy = (Vo H|Vp) calculated with the trial function @ has
at most two minima as a function of, v: one is always located at = 1, v = 0 and
corresponds to singlets on the diagonal links, and the position of the other minimung)
depends orh. andy; this latter minimum is absent in certain regions of the phase diagram.
The two minima have equal energies only at the MG point, and for any other choice of the
model parameters they are inequivalent [3].

’ singlets

on diagonals,”

N

distance r with weight exp(-r/£)

Figure 3. The structure of the variational two-spinansatz(3), (4). Ovals show the locations
of matrices; solid ovals denogg® and dashed ones dendte Thick solid links represent singlet
bonds (bonds inside dashed ovals alwayspure dimer bonds, and bonds between the solid
ovals become purely singlet only on the disorder line- 21 — 1).

We construct the trial wave function for the elementary excitation, requiring the
following:

(i) it should be a triplet;

(i) it should be a soliton in the generalized string order as defined above;

(iii) it should be able to reproduce thensatzof Shastry and Sutherland for the MG
point [8], i.e. a pair of unbound spins connecting two degenerate dimer ground states, and
the ‘crackion’ansatzof Fath and $lyom [14].
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One can check that the following construction satisfies the above requirements:

n n' N
ot =1 (TTe®)a [T 7 IT ). ®
i=1

i=n+1 i=n'+1

Here g,.(o) = gi(ug, vp) denotes the matrix corresponding to the variational ground state,
andg; = g;(u = 1,v = 0) is the matrix describing singlet dimers on the diagonals (it

is easy to see from €} thatg; is proportional to the unit matrix). In fact, the state (3)
describes two domain walls which correspond to transitions between the two inequivalent
variational ground states mentioned above,; it is worth remarking that the ptatésu) are

not mutually orthogonal. The presence&jf ensures that this state breaks the generalized
string order and has the total spin= 1 and thez-projectionS, = u (the general technique

for constructing MP states with the given quantum numlisers, can be found in reference
[25]). The structure of thansatz(3) is schematically shown in figure 3.

At the MG point, ug = vg = % and one can straightforwardly check that in this
case equation (3) describes a pair of unbound s%;ieeparating two completely dimerized
regions, i.e. it reduces to ttensatzof Shastry and Sutherland. On the other hand, 4 »’
andug = 0, then the state (3) is exactly the same as the ‘crackion’atii and 8lyom.

We use the following (unnormalized) trial wave function of the composite two-spinon
excitation with a given total momentum

Ik, g5 ) =Y @keriizgatnmm 2y s ), )

n’'>n

It contains two variational parametekg,and &, which can be considered as the real and
imaginary parts of the relative momentum of the two s@ientities forming our composite
particle. The parametér has the meaning of a localization length, or the average size of
the composite object, and nonzeracorresponds to the excitation of some internal degree
of freedom. If the localization length diverges,— oo, the wave function describes a
triplet scattering state of two spinons, and finjteorresponds to a bound state.

On the disorder liner = 21 — 1, according to reference [3], the parametegsand vg
both equal%, and the structure of our variatiorahsatzbecomes rather obvious: it describes
a bound state of two Shastry—Sutherland kinks (‘free spins’ in a completely dimerized chain)
with the localization lengtlg.

The energy for such an excitation can be calculated in the usual way:

E(q.6.k) = (k. q; MIIILI ?olk,q, ) )
(ks wlks )

and has to be minimized ovérandgq, separately for any giveh (as we will see below, it
turns out that optima$ strongly depends ok). In this way one looks for a lowest variational
state in a subspace with the total sgin= 1 and certain momenturk. Calculating the
averages in (5) involving MP states can be done with the help of the standard technique
[21, 24]. The final expression fdt (q, &, k) is quite cumbersome because of the complicated
structure of our trial wave function (3), so we present here only the resulting dispersion
plots for a number of representative points of the phase diagram. The minimization has
been performed numerically.

Another, simpleransatzcan be obtained if one forces (4) to be strongly localized,
i.e.& — 0. Then only the configurations with= »n" survive, and we obtain

ks ) =D € ) (62)

n
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where

0 0 ~ 0 0 0
In; ) = Tr{(gy 8y - 81205 (gr0 18002 - &N - (6b)

Such amansatzmay be called ‘regular’, or localized crackion (in contrast to our two-spinon
ansatz(4), describing an ‘extended crackion’), because it exactly reproduces the structure
of the wave function proposed byath and $lyom, and the only difference is in the
generalized concept of the string order (or, in other words, in the fact that magf?éeetre
allowed to contain singlet states). This ‘regular’ crackemsatzis essentially equivalent

to the construction introduced recently by Nakamatal [29] within a slightly different
approach using the Kennedy-Tasaki unitary transformation.

3. Variational results for the excitations, and comparison with numerical data

In this section we present variational and numerical results for dispersion relations, lowest
modes, and their corresponding wave vectors for various points of the phase diagram. In
the first subsection we study the spinon-type excitations on the symmetry liae0 in

the vicinity of the MG point. Variational energies for scattering states and bound states
are computed at the MG point,= % and the difference in behaviour of the spectrum for

A > % andA < % is discussed. In the second subsection we investigate the consequences
of alternation. When one moves off the symmetry line, the crossover from spinon-type
excitations to ladder-type (‘crackion’) excitations occurs, which is characterized by the
change of the localization length(ko) from infinity to zero; hereko denotes the wave
vector of the lowest-energy mode. We show that this crossover takes placeigtthe
boundary of the incommensurate region whigechanges gradually from O te. These
results are compared with numerical data from exact diagonalization for 24 spins. Because
the correlation lengths for the points taken into account are rather small, the numerical data
are very close to the thermodynamic limit, and therefore we do not perform any finite-size

extrapolation.

3.1. Elementary excitations on the symmetry kne 0

The ansatz(3), (4) obviously becomes inadequate close to the symmetryline O
(except for the MG point), because two variational minima of the ground-state energy
are inequivalent while the true ground state is twofold degenerate on this line. However,
the interval of the symmetry line in the vicinity of the MG point (ije.= 0 andA close

to %) can be studied with the help of the Shastry—Sutherland-#yyatz it is sufficient to

putug = v = 1/2 in (3), (4). In the limité — oo one gets exactly thansatzof reference

[8] and can thus calculate variational energies for the scattering states. On the other hand,
if we do not forcet¢ = oo, the energy of the lowest bound state can be calculated for each
value of the total momenturh. For the scattering states it is possible to obtain a compact
analytical expression for the energy of such a two-particle excitation:

_ (k+gq k—gq

e(k) = %(5+4cosk) + (1—2,\){2 +

5 cosk +4} (7)

5+ 4 cosk
Heree (k) has the meaning of the spinon dispersion.i\At % it coincides with the result of

reference [8]. (It should be mentioned that since in this paper we consider the general case
of an alternated chain, momenta in equations (4), (7) are defined in the halved Brillouin
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Figure 4. The dependence of the gap amon the symmetry lines = 0 in the vicinity of the
MG point; the full line represents the variational result according to (7), and the diamonds are
numerical (DMRG) results given by White and Affleck [30].

E(k)

0.0

0 /2 n
total momentum k

Figure 5. Typical plots of the lower boundary of the two-spinon continuum on the symmetry
line y = 0 in the vicinity of the MG point: the lines correspond to the formula (7) and the
points (J, ¢, O) are exact-diagonalization data for a 24-spin system .

zone, in contrast to the case in reference [8]). The dispersion relation is determined by the
lower boundary of the two-particle continuum. The resultindependence of the gap is

shown in figure 4, together with the numerical results by White and Affleck [30]. One can
see that quantitatively this approach yields reasonable results only in the close vicinity of
the MG point; nevertheless, at the qualitative level it correctly predicts closing of the gap
on decreasing and the existence of a maximum Hy (1) at A slightly greater thar%.
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Characteristic plots of the dispersion of scattering states in the vicinity of the MG point
are shown in figure 5. From (7) one can see that\ftess tham., = 1% the single-spinon
dispersion has a minimum &t= ko = =, and for largerx this minimum shifts towards
ko lower thansz. Thus, the lower boundary of the two-spinon continuum always has the
minimum atk = 0 (corresponding t@ = 2kg), and fori > A, there appears another
minimum atk = kg = 2(x — ko) (which corresponds tg = 0). Whena increases, this
second minimum gets more pronounced.

The appearance of the lowest mode with an incommensurate wave vector is closely
related to the existence of the so-called disorder points [31-33] where spin—spin correlations
in real space become incommensurate. Strictly speaking, the point at which the wave vector
of the lowest mode becomes incommensurate corresponds not to the disorder point itself, but
to the so-called Lifshitz point where the correlation function peak in momentum space (i.e.,
the peak in the structure fact6Xg)) starts moving from commensurate to incommensurate
q. Generally, the Lifshitz point does not coincide with the disorder point and is situated at
some small distance from the boundary of the incommensurate region. In our variational
calculation the wave vector starts to change. at= l%, while the disorder line (the line of
disorder points) is numerically established [34, 2] tojbe- 21 — 1, which means that at

y = 0 the disorder point ig = % < Az, in agreement with the above.

E(k)

0
22 2.6 30

0.0 L 1
0 /2 T

total momentum k

Figure 6. The variational result for the dispersion at the MG point 0, A = % (solid line)
in comparison with the numerical data for 24 spins (diamonds); the inset shows the momentum
dependence of the localization lendttk) for the bound states.

We would like to end this subsection by pointing out the role of bound states. At the
MG point it is known [8] that bound states are lower in energy than scattering states for
wave vectorsk close to the zone boundary. This was shown in reference [8] by using the
variational estimate for the upper bound of the dispersion (see below). We can capture
the dispersion of the lowest bound state in our approach if we minimize with respéct to
for eachk. For values of the total momentum68r < k < = we obtain Y&y, > 0 as
shown in figure 6. The same feature, namely the appearance of bound states as the lowest-
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energy excitations, can be expected for A, andk around the midpoint in between the

two dispersion minima, but we did not perform this calculation. Generally, more than one
bound state may exist [35]; unfortunately, within the present approach one can access only
the lowestbound state.

3.2. Dispersion relations and the crossover from loosely bound to tightly bound spinons

First of all, we would like to focus on the disorder lipe= 2L — 1. As soon as one moves
away from the MG pointX = % y = 0) towards the dimer point.(= 0, y = —1), the

energy of the MG ground state with singlets on diagonals picks up an energy proportional to
the size of the system, while the other MG ground state with singlets on the rungs remains
the true ground state. As a consequence, only bound states of spinons can survive: this is
a typical confinement situation. The wave vector of the lowest mode iscs#lD.

4.0 T " T T j
----- E(k=0)
== Ek=n)
& (k=0)
20 t )
Dimer point MG point.- N
0.0 " L ! ! PE— I i -
L - ” - - Figure 7. The bandwidthE(0) — E(x) and the

localization lengthé of the lowest-energy mode
on the disorder lingr = 20 — 1.

¥=2h—1

The main feature of this excitation is thedependent delocalization: the ground state is
formed as a product of rung singlets. If we now replace one singlet by a triplet and superpose
with wave vectorr, we obtain an exact eigenstate on the disorder line, whose energy gives
the upper bound of the dispersion [36]. To obtain the lowest mode we delocalize the
up spins, which make up the triplet, with the amplitudé/& as shown in figure 3, and
superpose with the wave vectbr= 0. The bandwidth for this excitation is illustrated in
figure 7; one can see that the bandwidth increases along with the increase of the localization
length& from O to oo on the way from the dimer point to the MG point (heres not to
be confused with the spin-correlation length!) At the MG point we reproduce the result
of Shastry and Sutherland for the gap= 1/4. One may say that here we observe the
crossover from loosely bound spinons (the ‘extended crackiork & < oo) to spinons
tightly bound into the Haldane triplet (the ‘crackiorf,« 1), even though the crackion at
the dimer point is a trivial (dispersionless) excitation.

The same physical picture of crossover should be valid for any path beginning
somewhere on the symmetry line and ending somewhere at sufficiently negatioe
the symmetry lineg (ko) should be infinite £y denotes the lowest-mode wave vector), and
it decreases to zero wheny is large enough. In the present approach we can observe this
& — oo behaviour only for the MG point, because for any other point on the symmetry line
our two variational ground states become inequivalent and we lose the feature of twofold
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degeneracy. However, we believe that our approach remains reasonable for points which are
far enough from the symmetry line, where the translational symmetry is explicitly broken
and this effect overrides the built-in dimerization of our variatiomasatz

It is worthwhile to make a few remarks concerning the behaviour of the real part of
relative momentung. Because of the confinement, the energy of states with internal motion,
i.e. withg # 0, 2, has to be much higher compared to that of the states with zero relative
momentum. In our variational calculations we were able to detect only one minimum which
always occurred ag = 0 or 2t (strictly speakingg = 0 for 7 < k < 27 andg = 2x for
0 < k < 7, so sets withy = 0 andg = 2 correspond to physically equivalent states).

1.5 T

el
A=1 (isotropic ladder)
e L 4
< 1.0
on
5
o
2
& r=1/2
T ost _
0.0 . Figure 8. The momentum dependence of the
0 w2 T |ocalization lengttt for two points on the line
total momentum k y = —1. Note thatt(z) = 0.

The crossover from the ‘extended crackion’ to the crackion is related to the change
of wave vectorkq of the lowest mode, due to the following remarkable feature which we
observed from our calculations and which is illustrated by figuree8erywhere in the
gapped region of the phase diagram, the propéirty,_., £(k) = 0 holds. Thus, oncekg
has changed from O ta, we know that the lowest mode is a ‘usual’ crackion because
&(r) = 0, so the crossover takes place at #fge= 7 boundary of the incommensurate
region. In order to determine the boundaries of the incommensurate region, we used our
variational approach and compared the results with exact-diagonalization data. In figure 9(a)
dispersion relations for a few points on the vertical line- % are presented. The numerical
data and variational results are in good agreement even though the lowest wave vectors are
at slightly different positions (one should keep in mind that numerical dispersions for finite
chains consist of a finite number of points). Figure 9(b) illustrates the changgwifien
crossing the disorder line. Similarly to the situation on the symmetry line as described
in the previous subsection, one can see Hastarts to change from 0 not exactly at the
disorder line but slightly above it (i.e., the Lifshitz line is not identical to the disorder line).
The comparison with the numerical data, as is shown in figure 9(b), confirms this property,
within the numerical accuracy (exact diagonalization of 24 spins leads to 12 values for
the wave vector which is not sufficient to mark the incommensurate region precisely but
allows qualitative comparison). The boundaries of the incommensurate region obtained by
the variational calculation are presented in figure 2. It should be pointed out that our result
for the ko = 7 boundary does not agree with that of Patial [37]. For example, we
obtain that theko = 7 boundary goes through the dimer pojnt= —1, » = 0, while the
corresponding curve C of figure 2 from reference [37] crosseg tee—1 line atA ~ 0.6.
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A=112 & —— =006 (a)
_____ O -~ =025
e 0~ =035

<
0.4 :
0 /2 7
total momentum k
- O — 2h=—y=0.54 (b) |
Tl O----- 2=-y=0.56
100 F S~ O===- ==0.58 iy

/2 n
total momentum k

Figure 9. The dispersion curves from the variatioralsatzin comparison with the numerical
data from exact diagonalization for 24 spins: (a) three points on thekliﬁ%; (b) three points
on the liney = —2x in the vicinity of its crossing with the disorder ling = 21 — 1 (the
numerical data are taken from reference [3]).

At present we cannot comment on the origin of this strong discrepancy.

Finally, we would like to discuss the vicinity of the lime = —1 which includes the
experimentally relevant ladder poilt & 1, y = —1). Figure 10 shows the dispersion
curves for the ‘regular’ crackion and the ‘extended’ crackion, and the numerical data for
two points on this line (we should mention that our data agree rather well with those of
reference [38]). The dispersion curve of the extended crackion is located slightly below the
curve of the crackion and coincides with it foe= 7, in agreement with the general property
lim,_.. &(k) = 0 (see also figure 8). One can also observe thatktkeO gap is slightly
larger than Z(k = ), which indicates the repulsive character of the effective interaction
between the elementary excitations in the ladder. Figure 11 displays the lowest crackion
mode (k = m) in comparison with exact-diagonalization data along the horizontal line
y = —1, 0< A < 1. We conclude that the ladder excitations can be described by the usual
crackionansatz and that isotropic spin ladder has the same type of elementary excitation as
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25 b (a) A
20 F ) 4
crackion
/
= 1.5 B
g

o _-" extended crackion

T
h

0.0 :
0 /2 T

total momentum &

continuum (b)

crackion

E(k)

%

Y
extended crackion

0.5 :
0 /2 b3

total momentum k

Figure 10. The dispersion of the elementary excitations on the jine- —1: (a) the ladder
pointA = 1; (b) » = % The variational results from the ‘extended-crackioft’'=£ &min(k))

and ‘crackion’ (¢ = 0) approaches are shown along with the numerical dé)affom exact
diagonalization. The chain curve shows the lower boundary of the two-particle continuum for
the ‘extended-crackiorénsatz

the effectiveS = 1 chain which appears as the linjit— —oo of the generalized frustrated
ladder. In that limit the localization length collapses for all values of because creation
of singlets on the diagonals would cost infinite energy.

4. Conclusion

We have presented a variational matrix-prodansatzfor elementary excitations in the
gapped phase of the = % ladder with an additional frustrating diagonal coupling-1/,

y < 0; the strength of interaction along the legs.jsand the interaction along the rungs is
chosen to be unity. This system is equivalent to the antiferromagnetic%s;igzag chain
with alternating exchange (the magnitude of the alternation is proportiongl &md next-
nearest-neighbour interaction Our ansatzdescribes a triplet state of tw® = % entities
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Figure 11. The energy of the lowest modg(k = n) along the liney = —1; the solid

line represents the variational result, and diamondly gre numerical points from exact
diagonalization for 24 spins.

(‘spinons’) and allows one to interpolate between free and bound spinons by varying the
paramete which has the meaning of a localization length (the average distance between
spinons in the pair). This state is constructed to be a soliton in generalized string order
[3], and in the limity — —oo of the effectiveS = 1 Haldane chain it coincides with

the ‘crackion’ansatzproposed by &th and 8lyom [14] if the localization lengtlf¥ — O;

for that reason we call ousnsatzan ‘extended crackion’. The lim§ — oo leads to the
two-particle excitation of Shastry and Sutherland [8], which corresponds to free spinons
existing in the absence of the alternation (i.e., on the symmetry/ire0).

Using our variationalansatz we calculated dispersion relations for various points in
the phase diagram. These results were compared to exact-numerical-diagonalization data
for 24 spins, and showed a reasonable agreement of the two approaches. The variational
parameteg was determined separately for each value of the total momehtitnturns out
that £(k) has nontrivial behaviour; in particular, the property Jim & = 0 was observed
numerically over the entire range of model parameters studied.

We determined the boundaries of the incommensurate region (strictly speaking, the
corresponding Lifshitz lines) by locating the wave vectgr of the lowest mode: for
y > 20 — 1 the wave vector is pinned & = 0, slightly after crossing this line it starts to
change from 0O tor, and, finally, at some other line it again gets pinnedgat 7 (in terms
of the full Brillouin zone of the chain this corresponds to the change froto 7 /2).

We show that in the interval between the symmetry jine 0 and thekg = 7 boundary
of the incommensurate region the dispersion of elementary excitations is well described by
our bound-spinomnsatz The crossover of the lowest mode from the ‘extended crackion’ to
the ‘localized’ crackion (i.e., from finit€ (ko) to &(kg) = 0) occurs at théy = 7 boundary
of the incommensurate region, due to the above-mentioned property of the fuagtion
For the isotropic ladder point/(= —1, A = 1) a localized-crackiormnsatzwith &€ = 0 is
sufficient to describe the excitations.

To conclude, we propose a simgasatzproviding a reasonably good description of the
elementary excitations in the gapped phase of the frustr&ted% chain with alternation
for over wide range of the model parameters.
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