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Abstract. We use the variational matrix-productansatzto study elementary excitations in the
S = 1

2 ladder with additional diagonal coupling, equivalent to a singleS = 1
2 chain with

alternating exchange and next-nearest-neighbour interaction. In the absence of alternation, the
elementary excitation consists of two freeS = 1

2 particles (‘spinons’) which are solitons in the
dimer order. When the nearest-neighbour exchange alternates, the ‘spinons’ are confined into
oneS = 1 excitation which is a soliton in the generalized string order. The variational results
are found to be in qualitative agreement with the exact-diagonalization data for 24 spins. We
argue that such an approach gives a reasonably good description over a wide range of the model
parameters.

1. Introduction

Spin ladders continue to attract much attention as structures intermediate between one-
and two-dimensional forms and possibly important for the understanding of high-Tc

superconductivity [1]. On the other hand, there exists a close relationship between
‘generalized’ spin ladders (with an additional diagonal coupling), antiferromagnetic chains
with frustrating next-nearest-neighbour interaction, and the Haldane systems.

Figure 1. The generalized spin ladder with additional diagonal (frustrating) coupling. The
arrows show the way in which the sites are numbered to map this system onto a single chain
with nearest- and next-nearest-neighbour interactions.

In the present paper we study elementary excitations of the generalizedS = 1
2 spin

ladder model (equivalent to a single-zigzag spin chain with alternation and frustration). The
model is described by the Hamiltonian (see figure 1)

Ĥ =
∑

n

S1,n · S2,n + (1 + γ )
∑

n

S1,n · S2,n+1 + λ
∑

n

(S1,n · S1,n+1 + S2,n · S2,n+1) (1)
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Figure 2. The phase diagram of the generalized ladder. The interval of the lineγ = 0 for
0 < λ < λc ≈ 0.2411 is gapless, and the other part of the diagram is gapped. Thek = 0 and
k = π boundaries of the incommensurate region are variational estimates for the corresponding
Lifshitz lines determined from the variation of the wave vectork of the lowest excitation mode.
The disorder line, where spin–spin correlations in the real space become incommensurate, for
the k = 0 boundary is known [34, 2] to beγ = 2λ − 1; for the k = π boundary the exact
position of the disorder line is unknown.

where λ > 0 determines the strength of the next-nearest-neighbour interaction, andγ

corresponds to alternation of the nearest-neighbour exchange, whose strength is set to be
unity. This model has rich behaviour depending on the values of parametersλ andγ , and
its phase diagram (see figure 2) is rather well understood [2, 3] (at least for the half-plane
λ > 0; for negativeλ the situation is less clear [4]). Without loss of generality, we will
assume thatγ < 0, since there is an obvious symmetry transformation [3] relating the half-
planeγ > 0 with the strip−1 < γ < 0. The ‘symmetry line’γ = 0 is peculiar because it
is the line of transition between dimerized phases with different signs of the dimer order.
Within the interval 0< λ < λc ≈ 0.24 this transition is of second order, the ground state
is unique and nondimerized, and the corresponding spectra are gapless; on the other part
of this line the transition is of first order, so forλ > λc, γ = 0 there are two degenerate
dimerized ground states, and the system is gapped. The transition atλ = λc has been well
studied; see reference [5] for a review. Everywhere except at the symmetry line, the model
(1) has a unique ground state with a finite gap above it. In the limitγ → −∞ the diagonal
spins form effectiveS = 1 units, and the system becomes equivalent to theS = 1 Haldane
chain, with the effective coupling constant(1 + 2λ)/4.

Elementary excitations of the generalized ladder, however, have been studied to a much
lesser extent than its ground-state properties. The Heisenberg model (λ = 0, γ = 0) is
exactly solvable by means of the Betheansatztechnique, and the elementary excitations are
pairs of noninteractingS = 1

2 entities (‘spinons’) [6]. The ground state contains the Fermi
sea of spinons, and the excitations are of the particle–hole type.

It is also known that at the so-called Majumdar–Ghosh (MG) point (γ = 0, λ = 1
2),

where the exact (twofold-degenerate) ground state is a simple product of singlet dimers
[7], the elementary excitation can be approximately constructed as a pair of unbound spins
above the completely dimerized state [8]. The elementary excitation is composed of two
S = 1

2 entities which are kinks in the dimer order and resemble spinons in that they
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are ‘almost free’ (i.e. form scattering states for most values of momenta) in the case of
unbroken translational invariance. When nonzero alternation is present, one may expect
those ‘spinons’ to be confined into a singleS = 1 particle [9–11].

In the Haldane limit (infinite alternation), the system has long-range hidden (string)
order [12], and the elementary excitation is known [13–15] to be a soliton in the string
order. The concept of string order was generalized to spin ladders [16–18] and it was
shown that several ladder models exhibit long-range generalized string correlations [18]. It
was argued [18] that the gapped phase of the spin ladder is the same as the Haldane phase
of the effectiveS = 1 chain.

We construct the variationalansatzfor the wave function of the elementary excitation in
the form of a matrix product, using the recently proposed [3] matrix-product-states approach
to the description of the ground-state properties of spin ladders. The ground state in this
approach has a built-in generalized string order, and we construct the excitation as theS = 1
composite particle, which is a kink in the string order and consists of two boundS = 1

2
entities. The wave function of the kink pair contains only one variational parameter,ξ ,
having the meaning of the average pair size (the localization length). We show that at the
MG point ξ is infinite, and ouransatzreduces to that of Shastry and Sutherland [8]; on
moving away from the MG point,ξ drops down very quickly to a value of about a few
lattice constants. At the ‘regular’ ladder point (γ = −1, λ = 1) the dispersion relation
as obtained from ouransatzagrees well with the results obtained by other authors using
different techniques (see reference [1] and references therein). In the Haldane limit,ξ goes
to zero, and our wave function transforms into the ‘crackion’ansatzintroduced by F́ath
and Śolyom [14] (see also reference [19]) for the description of the Haldane triplet in the
Affleck–Kennedy–Lieb–Tasaki (AKLT) model. We compare our variational results with the
numerical data obtained through the exact diagonalization of a finite (24-spin) ladder system,
and find a reasonable agreement between the two approaches. We conclude that our simple
variationalansatzallows us to study analytically at a qualitative level the crossover from
free to strongly bound spinons, giving a reasonably good description over a wide range of
physical models.

The paper is organized as follows: in section 2 we introduce ouransatz for the
elementary excitation. In section 3 we present results from the variational calculation and
compare them with numerical data. The elementary excitations in different regions of the
phase diagram are discussed. Finally, section 4 contains concluding remarks.

2. The two-spinon ‘composite particle’ansatz

Recently, a variational wave function for the description of the ground-state properties of
generalized spin ladders was proposed [3] in the form of a matrix-product (MP) state. The
MP representation was first discussed by Fanneset al [20] in an abstract manner, and
later by Klümper et al [21] for the S = 1 deformed VBS chain, and has found since
then numerous applications in exact and variational calculations [22–25]. It should also be
mentioned that the MP structure naturally appears in the thermodynamic and large-m limits
of the density matrix renormalization group calculations [26, 27]. For periodic boundary
conditions, the trial wave function for the ground state of the ladder consisting of 2N spins
can be written as

|90〉 = Tr(g1g2 · · · gN) (2a)
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where

gi(u, v) = u
(

1̂|s〉i
)

+ v
∑

µ=0,±1

σ̂µ|tµ〉i . (2b)

Here the elementary matrixgi is constructed from the singlet state|s〉i and three triplet
states|tµ〉i of the ladder diagonals;̂σµ are the Pauli matrices in a spherical basis;σ0 = σz

and σ±1 = ∓(1/
√

2)(σx ± iσy). The parametersu and v in the case of the absence of
an external magnetic field can be chosen real, and they satisfy the normalization condition
u2 + 3v2 = 1.

The wave function (2a) has the following remarkable properties [3]:

(i) for arbitrary u andv it is a global singlet (see also reference [25] for details);
(ii) it has a built-in generalized string order defined as ‘diluted antiferromagnetic order’:

|t+1〉 and|t−1〉 should occur in perfect antiferromagnetic sequence, arbitrarily diluted by|s〉s
and |t0〉s;

(iii) both degenerate dimer ground states at the Majumdar–Ghosh point can be written in
the above form, as can the ‘valence-bond’ AKLT state [28] which approximates the ground
state in the effectiveS = 1 Haldane limit. The two dimer ground states at the MG point
correspond tou = 1, v = 0 andu = v = 1

2 respectively, and the AKLT state corresponds
to zero singlet weight (u = 0, v = 1/

√
3).

The state (2a) has very short-ranged correlations and therefore cannot be considered as
a good approximation in the gapless region of the phase diagram; we will thus restrict
ourselves to the study of the gapped phase only.

The variational energyE0 = 〈90|Ĥ |90〉 calculated with the trial function (2a) has
at most two minima as a function ofu, v: one is always located atu = 1, v = 0 and
corresponds to singlets on the diagonal links, and the position of the other minimum(u0, v0)

depends onλ andγ ; this latter minimum is absent in certain regions of the phase diagram.
The two minima have equal energies only at the MG point, and for any other choice of the
model parameters they are inequivalent [3].

Figure 3. The structure of the variational two-spinonansatz(3), (4). Ovals show the locations
of matrices; solid ovals denoteg(0) and dashed ones denoteg̃. Thick solid links represent singlet
bonds (bonds inside dashed ovals arealwayspure dimer bonds, and bonds between the solid
ovals become purely singlet only on the disorder lineγ = 2λ − 1).

We construct the trial wave function for the elementary excitation, requiring the
following:

(i) it should be a triplet;
(ii) it should be a soliton in the generalized string order as defined above;
(iii) it should be able to reproduce theansatzof Shastry and Sutherland for the MG

point [8], i.e. a pair of unbound spins connecting two degenerate dimer ground states, and
the ‘crackion’ansatzof Fáth and Śolyom [14].
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One can check that the following construction satisfies the above requirements:

|n, n′; µ〉 = Tr

{( n∏
i=1

g
(0)
i

)
σ̂ †

µ

n′∏
i=n+1

g̃i

N∏
i=n′+1

g
(0)
i

}
. (3)

Here g
(0)
i = gi(u0, v0) denotes the matrix corresponding to the variational ground state,

and g̃i = gi(u = 1, v = 0) is the matrix describing singlet dimers on the diagonals (it
is easy to see from (2a) that g̃i is proportional to the unit matrix). In fact, the state (3)
describes two domain walls which correspond to transitions between the two inequivalent
variational ground states mentioned above; it is worth remarking that the states|n, n′; µ〉 are
not mutually orthogonal. The presence ofσ̂ †

µ ensures that this state breaks the generalized
string order and has the total spinS = 1 and thez-projectionSz = µ (the general technique
for constructing MP states with the given quantum numbersS, Sz can be found in reference
[25]). The structure of theansatz(3) is schematically shown in figure 3.

At the MG point, u0 = v0 = 1
2, and one can straightforwardly check that in this

case equation (3) describes a pair of unbound spins1
2 separating two completely dimerized

regions, i.e. it reduces to theansatzof Shastry and Sutherland. On the other hand, ifn = n′

andu0 = 0, then the state (3) is exactly the same as the ‘crackion’ of Fáth and Śolyom.
We use the following (unnormalized) trial wave function of the composite two-spinon

excitation with a given total momentumk:

|k, q; µ〉 =
∑
n′>n

eik(n+n′)/2eiq(n−n′)/2e−(n′−n)/ξ |n, n′; µ〉. (4)

It contains two variational parameters,q and ξ , which can be considered as the real and
imaginary parts of the relative momentum of the two spin-1

2 entities forming our composite
particle. The parameterξ has the meaning of a localization length, or the average size of
the composite object, and nonzeroq corresponds to the excitation of some internal degree
of freedom. If the localization length diverges,ξ → ∞, the wave function describes a
triplet scattering state of two spinons, and finiteξ corresponds to a bound state.

On the disorder lineγ = 2λ − 1, according to reference [3], the parametersu0 andv0

both equal12, and the structure of our variationalansatzbecomes rather obvious: it describes
a bound state of two Shastry–Sutherland kinks (‘free spins’ in a completely dimerized chain)
with the localization lengthξ .

The energy for such an excitation can be calculated in the usual way:

E(q, ξ, k) = 〈k, q; µ|Ĥ − E0|k, q; µ〉
〈k; µ|k; µ〉 (5)

and has to be minimized overξ andq, separately for any givenk (as we will see below, it
turns out that optimalξ strongly depends onk). In this way one looks for a lowest variational
state in a subspace with the total spinS = 1 and certain momentumk. Calculating the
averages in (5) involving MP states can be done with the help of the standard technique
[21, 24]. The final expression forE(q, ξ, k) is quite cumbersome because of the complicated
structure of our trial wave function (3), so we present here only the resulting dispersion
plots for a number of representative points of the phase diagram. The minimization has
been performed numerically.

Another, simpleransatzcan be obtained if one forces (4) to be strongly localized,
i.e. ξ → 0. Then only the configurations withn = n′ survive, and we obtain

|k; µ〉 =
∑

n

eikn|n; µ〉 (6a)
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where

|n; µ〉 = Tr{(g(0)

1 g
(0)

2 · · · g(0)
n )̂σ †

µ(g
(0)

n+1g
(0)

n+2 · · · g(0)
N }. (6b)

Such anansatzmay be called ‘regular’, or localized crackion (in contrast to our two-spinon
ansatz(4), describing an ‘extended crackion’), because it exactly reproduces the structure
of the wave function proposed by Fáth and Śolyom, and the only difference is in the
generalized concept of the string order (or, in other words, in the fact that matricesg

(0)
i are

allowed to contain singlet states). This ‘regular’ crackionansatzis essentially equivalent
to the construction introduced recently by Nakamuraet al [29] within a slightly different
approach using the Kennedy–Tasaki unitary transformation.

3. Variational results for the excitations, and comparison with numerical data

In this section we present variational and numerical results for dispersion relations, lowest
modes, and their corresponding wave vectors for various points of the phase diagram. In
the first subsection we study the spinon-type excitations on the symmetry lineγ = 0 in
the vicinity of the MG point. Variational energies for scattering states and bound states
are computed at the MG point,λ = 1

2, and the difference in behaviour of the spectrum for
λ > 1

2 andλ < 1
2 is discussed. In the second subsection we investigate the consequences

of alternation. When one moves off the symmetry line, the crossover from spinon-type
excitations to ladder-type (‘crackion’) excitations occurs, which is characterized by the
change of the localization lengthξ(k0) from infinity to zero; herek0 denotes the wave
vector of the lowest-energy mode. We show that this crossover takes place at thek0 = π

boundary of the incommensurate region wherek0 changes gradually from 0 toπ . These
results are compared with numerical data from exact diagonalization for 24 spins. Because
the correlation lengths for the points taken into account are rather small, the numerical data
are very close to the thermodynamic limit, and therefore we do not perform any finite-size
extrapolation.

3.1. Elementary excitations on the symmetry lineγ = 0

The ansatz (3), (4) obviously becomes inadequate close to the symmetry lineγ = 0
(except for the MG point), because two variational minima of the ground-state energy
are inequivalent while the true ground state is twofold degenerate on this line. However,
the interval of the symmetry line in the vicinity of the MG point (i.e.γ = 0 andλ close
to 1

2) can be studied with the help of the Shastry–Sutherland-typeansatz: it is sufficient to
put u0 = v0 = 1/2 in (3), (4). In the limitξ → ∞ one gets exactly theansatzof reference
[8] and can thus calculate variational energies for the scattering states. On the other hand,
if we do not forceξ = ∞, the energy of the lowest bound state can be calculated for each
value of the total momentumk. For the scattering states it is possible to obtain a compact
analytical expression for the energy of such a two-particle excitation:

E(k, q) = ε

(
k + q

2

)
+ ε

(
k − q

2

)
ε(k) = λ

4
(5 + 4 cosk) + (1 − 2λ)

{
3

8
+ 5 cosk + 4

5 + 4 cosk

}
.

(7)

Hereε(k) has the meaning of the spinon dispersion. Atλ = 1
2 it coincides with the result of

reference [8]. (It should be mentioned that since in this paper we consider the general case
of an alternated chain, momenta in equations (4), (7) are defined in the halved Brillouin
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Figure 4. The dependence of the gap onλ on the symmetry lineγ = 0 in the vicinity of the
MG point; the full line represents the variational result according to (7), and the diamonds are
numerical (DMRG) results given by White and Affleck [30].

Figure 5. Typical plots of the lower boundary of the two-spinon continuum on the symmetry
line γ = 0 in the vicinity of the MG point: the lines correspond to the formula (7) and the
points (�, ♦, ◦) are exact-diagonalization data for a 24-spin system .

zone, in contrast to the case in reference [8]). The dispersion relation is determined by the
lower boundary of the two-particle continuum. The resultingλ-dependence of the gap1 is
shown in figure 4, together with the numerical results by White and Affleck [30]. One can
see that quantitatively this approach yields reasonable results only in the close vicinity of
the MG point; nevertheless, at the qualitative level it correctly predicts closing of the gap
on decreasingλ and the existence of a maximum inEg(λ) at λ slightly greater than1

2.
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Characteristic plots of the dispersion of scattering states in the vicinity of the MG point
are shown in figure 5. From (7) one can see that forλ less thanλπ = 9

17 the single-spinon
dispersion has a minimum atk = k0 = π , and for largerλ this minimum shifts towards
k0 lower thanπ . Thus, the lower boundary of the two-spinon continuum always has the
minimum at k = 0 (corresponding toq = 2k0), and for λ > λπ there appears another
minimum atk = k0 = 2(π − k0) (which corresponds toq = 0). Whenλ increases, this
second minimum gets more pronounced.

The appearance of the lowest mode with an incommensurate wave vector is closely
related to the existence of the so-called disorder points [31–33] where spin–spin correlations
in real space become incommensurate. Strictly speaking, the point at which the wave vector
of the lowest mode becomes incommensurate corresponds not to the disorder point itself, but
to the so-called Lifshitz point where the correlation function peak in momentum space (i.e.,
the peak in the structure factorS(q)) starts moving from commensurate to incommensurate
q. Generally, the Lifshitz point does not coincide with the disorder point and is situated at
some small distance from the boundary of the incommensurate region. In our variational
calculation the wave vector starts to change atλπ = 9

17, while the disorder line (the line of
disorder points) is numerically established [34, 2] to beγ = 2λ − 1, which means that at
γ = 0 the disorder point isλ = 1

2 < λπ , in agreement with the above.

Figure 6. The variational result for the dispersion at the MG pointγ = 0, λ = 1
2 (solid line)

in comparison with the numerical data for 24 spins (diamonds); the inset shows the momentum
dependence of the localization lengthξ(k) for the bound states.

We would like to end this subsection by pointing out the role of bound states. At the
MG point it is known [8] that bound states are lower in energy than scattering states for
wave vectorsk close to the zone boundary. This was shown in reference [8] by using the
variational estimate for the upper bound of the dispersion (see below). We can capture
the dispersion of the lowest bound state in our approach if we minimize with respect toξ

for eachk. For values of the total momentum 0.68π < k 6 π we obtain 1/ξmin > 0 as
shown in figure 6. The same feature, namely the appearance of bound states as the lowest-
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energy excitations, can be expected forλ > λπ andk around the midpoint in between the
two dispersion minima, but we did not perform this calculation. Generally, more than one
bound state may exist [35]; unfortunately, within the present approach one can access only
the lowestbound state.

3.2. Dispersion relations and the crossover from loosely bound to tightly bound spinons

First of all, we would like to focus on the disorder lineγ = 2λ − 1. As soon as one moves
away from the MG point (λ = 1

2, γ = 0) towards the dimer point (λ = 0, γ = −1), the
energy of the MG ground state with singlets on diagonals picks up an energy proportional to
the size of the system, while the other MG ground state with singlets on the rungs remains
the true ground state. As a consequence, only bound states of spinons can survive: this is
a typical confinement situation. The wave vector of the lowest mode is stillk = 0.

Figure 7. The bandwidthE(0) − E(π) and the
localization lengthξ of the lowest-energy mode
on the disorder lineγ = 2λ − 1.

The main feature of this excitation is thek-dependent delocalization: the ground state is
formed as a product of rung singlets. If we now replace one singlet by a triplet and superpose
with wave vectorπ , we obtain an exact eigenstate on the disorder line, whose energy gives
the upper bound of the dispersion [36]. To obtain the lowest mode we delocalize the
up spins, which make up the triplet, with the amplitude e−ξ/r as shown in figure 3, and
superpose with the wave vectork = 0. The bandwidth for this excitation is illustrated in
figure 7; one can see that the bandwidth increases along with the increase of the localization
length ξ from 0 to ∞ on the way from the dimer point to the MG point (hereξ is not to
be confused with the spin-correlation length!) At the MG point we reproduce the result
of Shastry and Sutherland for the gap1 = 1/4. One may say that here we observe the
crossover from loosely bound spinons (the ‘extended crackion’, 1� ξ < ∞) to spinons
tightly bound into the Haldane triplet (the ‘crackion’,ξ � 1), even though the crackion at
the dimer point is a trivial (dispersionless) excitation.

The same physical picture of crossover should be valid for any path beginning
somewhere on the symmetry line and ending somewhere at sufficiently negativeγ ; on
the symmetry line,ξ(k0) should be infinite (k0 denotes the lowest-mode wave vector), and
it decreases to zero when−γ is large enough. In the present approach we can observe this
ξ → ∞ behaviour only for the MG point, because for any other point on the symmetry line
our two variational ground states become inequivalent and we lose the feature of twofold
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degeneracy. However, we believe that our approach remains reasonable for points which are
far enough from the symmetry line, where the translational symmetry is explicitly broken
and this effect overrides the built-in dimerization of our variationalansatz.

It is worthwhile to make a few remarks concerning the behaviour of the real part of
relative momentumq. Because of the confinement, the energy of states with internal motion,
i.e. with q 6= 0, 2π , has to be much higher compared to that of the states with zero relative
momentum. In our variational calculations we were able to detect only one minimum which
always occurred atq = 0 or 2π (strictly speaking,q = 0 for π < k < 2π andq = 2π for
0 < k < π , so sets withq = 0 andq = 2π correspond to physically equivalent states).

Figure 8. The momentum dependence of the
localization lengthξ for two points on the line
γ = −1. Note thatξ(π) = 0.

The crossover from the ‘extended crackion’ to the crackion is related to the change
of wave vectork0 of the lowest mode, due to the following remarkable feature which we
observed from our calculations and which is illustrated by figure 8:everywhere in the
gapped region of the phase diagram, the propertylimk→π ξ(k) = 0 holds. Thus, oncek0

has changed from 0 toπ , we know that the lowest mode is a ‘usual’ crackion because
ξ(π) = 0, so the crossover takes place at thek0 = π boundary of the incommensurate
region. In order to determine the boundaries of the incommensurate region, we used our
variational approach and compared the results with exact-diagonalization data. In figure 9(a)
dispersion relations for a few points on the vertical lineλ = 1

2 are presented. The numerical
data and variational results are in good agreement even though the lowest wave vectors are
at slightly different positions (one should keep in mind that numerical dispersions for finite
chains consist of a finite number of points). Figure 9(b) illustrates the change ofk0 when
crossing the disorder line. Similarly to the situation on the symmetry line as described
in the previous subsection, one can see thatk0 starts to change from 0 not exactly at the
disorder line but slightly above it (i.e., the Lifshitz line is not identical to the disorder line).
The comparison with the numerical data, as is shown in figure 9(b), confirms this property,
within the numerical accuracy (exact diagonalization of 24 spins leads to 12 values for
the wave vector which is not sufficient to mark the incommensurate region precisely but
allows qualitative comparison). The boundaries of the incommensurate region obtained by
the variational calculation are presented in figure 2. It should be pointed out that our result
for the k0 = π boundary does not agree with that of Patiet al [37]. For example, we
obtain that thek0 = π boundary goes through the dimer pointγ = −1, λ = 0, while the
corresponding curve C of figure 2 from reference [37] crosses theγ = −1 line atλ ≈ 0.6.
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Figure 9. The dispersion curves from the variationalansatzin comparison with the numerical
data from exact diagonalization for 24 spins: (a) three points on the lineλ = 1

2 ; (b) three points
on the lineγ = −2λ in the vicinity of its crossing with the disorder lineγ = 2λ − 1 (the
numerical data are taken from reference [3]).

At present we cannot comment on the origin of this strong discrepancy.
Finally, we would like to discuss the vicinity of the lineγ = −1 which includes the

experimentally relevant ladder point (λ = 1, γ = −1). Figure 10 shows the dispersion
curves for the ‘regular’ crackion and the ‘extended’ crackion, and the numerical data for
two points on this line (we should mention that our data agree rather well with those of
reference [38]). The dispersion curve of the extended crackion is located slightly below the
curve of the crackion and coincides with it fork = π , in agreement with the general property
limk→π ξ(k) = 0 (see also figure 8). One can also observe that thek = 0 gap is slightly
larger than 2E(k = π), which indicates the repulsive character of the effective interaction
between the elementary excitations in the ladder. Figure 11 displays the lowest crackion
mode (k = π) in comparison with exact-diagonalization data along the horizontal line
γ = −1, 0< λ < 1. We conclude that the ladder excitations can be described by the usual
crackionansatz, and that isotropic spin ladder has the same type of elementary excitation as



1114 S Brehmer et al

Figure 10. The dispersion of the elementary excitations on the lineγ = −1: (a) the ladder
point λ = 1; (b) λ = 1

2 . The variational results from the ‘extended-crackion’ (ξ = ξmin(k))
and ‘crackion’ (ξ = 0) approaches are shown along with the numerical data (♦) from exact
diagonalization. The chain curve shows the lower boundary of the two-particle continuum for
the ‘extended-crackion’ansatz.

the effectiveS = 1 chain which appears as the limitγ → −∞ of the generalized frustrated
ladder. In that limit the localization lengthξ collapses for all values ofk because creation
of singlets on the diagonals would cost infinite energy.

4. Conclusion

We have presented a variational matrix-productansatzfor elementary excitations in the
gapped phase of theS = 1

2 ladder with an additional frustrating diagonal coupling 1+ γ ,
γ < 0; the strength of interaction along the legs isλ, and the interaction along the rungs is
chosen to be unity. This system is equivalent to the antiferromagnetic spin-1

2 zigzag chain
with alternating exchange (the magnitude of the alternation is proportional toγ ) and next-
nearest-neighbour interactionλ. Our ansatzdescribes a triplet state of twoS = 1

2 entities
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Figure 11. The energy of the lowest modeE(k = π) along the lineγ = −1; the solid
line represents the variational result, and diamonds (♦) are numerical points from exact
diagonalization for 24 spins.

(‘spinons’) and allows one to interpolate between free and bound spinons by varying the
parameterξ which has the meaning of a localization length (the average distance between
spinons in the pair). This state is constructed to be a soliton in generalized string order
[3], and in the limit γ → −∞ of the effectiveS = 1 Haldane chain it coincides with
the ‘crackion’ ansatzproposed by F́ath and Śolyom [14] if the localization lengthξ → 0;
for that reason we call ouransatzan ‘extended crackion’. The limitξ → ∞ leads to the
two-particle excitation of Shastry and Sutherland [8], which corresponds to free spinons
existing in the absence of the alternation (i.e., on the symmetry lineγ = 0).

Using our variationalansatz, we calculated dispersion relations for various points in
the phase diagram. These results were compared to exact-numerical-diagonalization data
for 24 spins, and showed a reasonable agreement of the two approaches. The variational
parameterξ was determined separately for each value of the total momentumk; it turns out
that ξ(k) has nontrivial behaviour; in particular, the property limk→π ξ = 0 was observed
numerically over the entire range of model parameters studied.

We determined the boundaries of the incommensurate region (strictly speaking, the
corresponding Lifshitz lines) by locating the wave vectork0 of the lowest mode: for
γ > 2λ − 1 the wave vector is pinned atk0 = 0, slightly after crossing this line it starts to
change from 0 toπ , and, finally, at some other line it again gets pinned atk0 = π (in terms
of the full Brillouin zone of the chain this corresponds to the change fromπ to π/2).

We show that in the interval between the symmetry lineγ = 0 and thek0 = π boundary
of the incommensurate region the dispersion of elementary excitations is well described by
our bound-spinonansatz. The crossover of the lowest mode from the ‘extended crackion’ to
the ‘localized’ crackion (i.e., from finiteξ(k0) to ξ(k0) = 0) occurs at thek0 = π boundary
of the incommensurate region, due to the above-mentioned property of the functionξ(k).
For the isotropic ladder point (γ = −1, λ = 1) a localized-crackionansatzwith ξ = 0 is
sufficient to describe the excitations.

To conclude, we propose a simpleansatzproviding a reasonably good description of the
elementary excitations in the gapped phase of the frustratedS = 1

2 chain with alternation
for over wide range of the model parameters.
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